Spectral Asymptotics in the Semi-Classical Limit by M. Dimassi, J. Sjostrand

By M. Dimassi, J. Sjostrand

Semiclassical approximation addresses the $64000 courting among quantum and classical mechanics. lately mathematical concept has passed through major progress, mostly because of microlocal research ideas. This quantity develops the fundamental tools of the idea, together with the WKB-method, desk bound part and h-pseudodifferential operators. The authors hire the systematic use of a Cauchy formulation that simplifies the sensible calculus of pseudodifferential operators. The purposes defined contain contemporary effects at the tunnel influence, the asymptotics of eigenvalues with regards to classical trajectories and common varieties, plus sluggish perturbations of periodic Schrödinger operators showing in sturdy country physics. The textual content assumes no past really good wisdom in quantum mechanics or microlocal research, and merely common wisdom of spectral concept in Hilbert house, distributions, Fourier transforms and a few differential geometry.

Show description

Read Online or Download Spectral Asymptotics in the Semi-Classical Limit PDF

Best abstract books

Intégration: Chapitres 7 et 8

Intégration, Chapitres 7 et 8Les Éléments de mathématique de Nicolas BOURBAKI ont pour objet une présentation rigoureuse, systématique et sans prérequis des mathématiques depuis leurs fondements. Ce quantity du Livre d’Intégration, sixième Livre du traité, traite de l’intégration sur les groupes localement compacts et de ses purposes.

Additional info for Spectral Asymptotics in the Semi-Classical Limit

Example text

It is easy to find a simple closed loop -y in {z E C; Re z < Coh} such that dist (z, a(P) U a(Po(h))) > eoh, z E ry and such that hEj, j < No - 1 are in the interior of 'y. Here Eo > 0 is some fixed number independent of h. 10), let E C L2(M) be the No-dimensional space spanned by Xej ( ; h), j = 0, ... N. basis in E in the sense that (XejIXek) = 6j,k +0(h°°). 18) 4. 10) as (z - P)(Xej) = (z - Ejh)Xej - rj> and apply (z - P)-1(z - Ejh)-1 for z E (z - P)-1Xej 'y: = (z - Ejh)-1Xej + (z - P)-1(z - Ejh)-1rj.

One eigenvalue is Ao = 1 and the corresponding normalized eigenfunction is uo = 7C- 4 e-y2/2 To generate the other eigenvalues, introduce the annihilation operator Z = d + x. Then if we dx + x and its adjoint, the creation operator Z* use the standard notation [A, B] = AB - BA for the commutator of the operators A, B, we get [Z, Z*] = 2, P = ZZ* - 1 = Z*Z + 1. Assuming we already found a function uj with Pub _ Ajuj, we try uj+l = Z*uj. Then PZ*ui = (Z*Z + 1)Z*uj = Z*(ZZ* + 1)uj = Z*(P+2)uj = (Aj +2)Z*uj.

DA)(A)a and hence BE,a,b = ff(A), where fE(t) 27ri f((t - A - ie)-1 - (t - A + ie)-1)dA = 27r f b (t - A)2 + E2 dA. We see that 0 < ff(t) < 1 and that fE _* (1[a,b] + 1[a,b[), when e tends to 0. 2 We then obtain Stone's formula: 2 (P[a,b] + Pa,b[) = strong with BE,a,b defined above. Essential spectrum. Let A : 7-l -> 7-l be selfadjoint. Then A E R belongs to o(A) if 0 for every e > 0. 16. We say that A E R belongs to the essential spectrum aess(A) if Pea-E,a+E[ is of infinite rank for every E > 0.

Download PDF sample

Rated 4.73 of 5 – based on 5 votes