# Serre's Problem on Projective Modules by T.Y. Lam By T.Y. Lam

A useful precis of study paintings performed within the interval from 1978 to the current

Similar abstract books

Intégration: Chapitres 7 et 8

Intégration, Chapitres 7 et 8Les Éléments de mathématique de Nicolas BOURBAKI ont pour objet une présentation rigoureuse, systématique et sans prérequis des mathématiques depuis leurs fondements. Ce quantity du Livre d’Intégration, sixième Livre du traité, traite de l’intégration sur les groupes localement compacts et de ses purposes.

Additional info for Serre's Problem on Projective Modules

Example text

0) · Q−1 = d · (x1 , . . , xn ). 4. 6) are more general than Kaplansky’s K-Hermite rings. We’ll also show that the property (6) above for a K-Hermite ring can be further strengthened. 26. Let R be K-Hermite. Then (A) R is both a Hermite ring and a Bézout ring. (B) Whenever b1 R + · · · + bn R = eR with n 2, there exist (y1 , . . , yn ) ∈ Umn (R) such that (b1 , . . , bn ) = e · (y1 , . . , yn ). Proof. 25) shows that R is Bézout. Given any β = (b1 , . . , bn ) ∈ Umn (R), take Q ∈ GLn (R) such that β Q = (d, 0, .

For n = 2, however, P (2) is not free over R2 . The best and quickest way to prove this is to use⎛a little bit⎞of topology. Indeed, suppose τ (2) = (x0 , x1 , x2 ) can x0 x1 x2 be completed into ⎝ f g h ⎠, with determinant equal to a unit e ∈ R2 . We think f g h of f, g, h, e, e−1 , . . as functions on S 2 : they are polynomial expressions in the “coordinate functions” x0 , x1 , x2 . Consider the continuous vector ﬁeld on S 2 given by v ∈ S 2 → (f (v), g(v), h(v)) ∈ IR3 . Since e = f · (x1 h − x2 g) − g · (x0 h − x2 f ) + h · (x0 g − x1 f ) is clearly nowhere zero on S 2 , the vector (f (v), g(v), h(v)) is nowhere collinear with the vector v.

Xn form a free basis for each Pmi upon localization. If we deﬁne f : R n → P by f (ej ) = xj for all unit vectors ej , then fmi is an isomorphism for every i. 2), it follows that f itself is an isomorphism, so P ∼ = R n as desired. For later reference, we shall take this opportunity to make some other useful remarks about semilocal rings. 8. A commutative ring R is semilocal iff R/rad R is artinian. Proof. If R/rad R is artinian, it is a ﬁnite direct product of ﬁelds. Thus, Max R = Max (R/rad R) is ﬁnite. 