Operator Algebras: Theory of C*-Algebras and von Neumann by Bruce Blackadar

By Bruce Blackadar

This booklet bargains a finished advent to the overall thought of C*-algebras and von Neumann algebras. starting with the fundamentals, the speculation is built via such subject matters as tensor items, nuclearity and exactness, crossed items, K-theory, and quasidiagonality. The presentation conscientiously and accurately explains the most positive aspects of every a part of the speculation of operator algebras; most vital arguments are at the least defined and lots of are offered in complete element.

Show description

Read or Download Operator Algebras: Theory of C*-Algebras and von Neumann Algebras (Encyclopaedia of Mathematical Sciences) PDF

Similar abstract books

Intégration: Chapitres 7 et 8

Intégration, Chapitres 7 et 8Les Éléments de mathématique de Nicolas BOURBAKI ont pour objet une présentation rigoureuse, systématique et sans prérequis des mathématiques depuis leurs fondements. Ce quantity du Livre d’Intégration, sixième Livre du traité, traite de l’intégration sur les groupes localement compacts et de ses functions.

Additional info for Operator Algebras: Theory of C*-Algebras and von Neumann Algebras (Encyclopaedia of Mathematical Sciences)

Sample text

We have that c−1 (c(T )) = T and c(c−1 (U )) = U ; c(T ) is permutable with T , and commutes with any S ∈ L(H) which is permutable with T . 2 Definition. The operator c(T ) is the Cayley transform of T , and c−1 (U ) is the inverse Cayley transform of U . If E is a spectral projection of c(T ) corresponding to a Borel subset A of T, then E is permutable with T ; in fact, EU is a unitary on EH, and it is easily verified that c−1 (EU ), which is a self-adjoint operator on EH, agrees with T |EH . Furthermore, E commutes with any bounded operator which is permutable with T .

Let S, T ∈ L(H) with S ∗ S ≤ T ∗ T . Then there is a unique W ∈ L(H) with W ∗ W ≤ QT (hence W ≤ 1), and S = W T . If R ∈ L(H) commutes with S, T , and T ∗ , then RW = W R. Proof: W is defined on R(T ) by W (T ξ) = Sξ (W is well defined since Sξ ≤ T ξ for all ξ). W extends to an operator on QT H by continuity; set ∗ ∗ ∗ W = 0 on Q⊥ T H. Then W W ≤ QT and S = W T . 6 The Spectral Theorem 23 and thus RW η = W Rη for η ∈ QT H. Since R(T T ∗ ) = (T T ∗ )R, RQT = QT R, and thus R leaves (I −QT )H invariant; thus if η ∈ Q⊥ T H, then W Rη = RW η = 0.

Let T be a densely defined operator on H. Then T is symmetric if T ⊆ T ∗ , and T is self-adjoint if T = T ∗ . A symmetric operator is closable (its closure is also symmetric) and a selfadjoint operator is closed. 2 Examples. 7 Unbounded Operators 31 D0 = {f ∈ D2 : f (0) = f (1) = 0}. Then D0 is dense in L2 [0, 1], and Dk has codimension one in Dk+1 (k = 0, 1). Let Tk be defined by Tk f = f with domain Dk (k = 0, 1, 2). Then each Tk is closed, T1 is self-adjoint, and T0∗ = T2 , so T0 is closed and symmetric, but not self-adjoint.

Download PDF sample

Rated 4.32 of 5 – based on 46 votes