By H. L. L. Busard

Euklids Hauptwerk, die Elemente, gilt als dasjenige wissenschaftliche Werk, das am häufigsten bearbeitet und benutzt wurde; es struggle ueber 2000 Jahre lang nicht nur das mathematische Lehrbuch schlechthin, sondern es beeinfluáte auch die Entwicklung anderer wissenschaftlicher Disziplinen. Das Werk wurde im 12. Jahrhundert aus dem Arabischen ins Lateinische uebersetzt, u.a. von Adelhard von tub. Diese Übersetzung wurde der Ausgangspunkt fuer zahlreiche weitere Bearbeitungen, wie die Redaktion, die um 1200 wahrscheinlich von Johannes de Tinemue angefertigt wurde. Campanus, der in den Jahren 1255/59 die fuer Jahrhunderte maágebende Euklid-Ausgabe besorgte, hat diese Redaktion sehr wahrscheinlich auch gekannt. "It is remember the fact that that the well known Euclid editor Busard has back learned a masterly edition." Mathematical stories "àBusard's version is critical for our realizing of excessive medieval arithmetic. " Centaurus.

**Read Online or Download Johannes de Tinemue's Redaction of Euclid's Elements, the So-Called Adelard III Version PDF**

**Similar geometry books**

**Geometry of Complex Numbers (Dover Books on Mathematics)**

Illuminating, broadly praised ebook on analytic geometry of circles, the Moebius transformation, and 2-dimensional non-Euclidean geometries. "This e-book can be in each library, and each specialist in classical functionality thought could be accustomed to this fabric. the writer has played a special provider by means of making this fabric so comfortably obtainable in one ebook.

**Geometric Tomography (Encyclopedia of Mathematics and its Applications)**

Geometric tomography offers with the retrieval of knowledge a couple of geometric item from information touching on its projections (shadows) on planes or cross-sections by way of planes. it's a geometric relative of automatic tomography, which reconstructs a picture from X-rays of a human sufferer. the topic overlaps with convex geometry and employs many instruments from that quarter, together with a few formulation from fundamental geometry.

Differential geometry arguably deals the smoothest transition from the normal collage arithmetic series of the 1st 4 semesters in calculus, linear algebra, and differential equations to the better degrees of abstraction and facts encountered on the top department by way of arithmetic majors. at the present time it really is attainable to explain differential geometry as "the examine of constructions at the tangent space," and this article develops this perspective.

- Projective Geometry with Applications to Engineering
- Fibonacci’s De Practica Geometrie
- Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings
- Problems in Plane and Solid Geometry, Volume 1, Plane Geometry
- Projective Geometry [Vol II]
- Turning Points in the History of Mathematics

**Extra resources for Johannes de Tinemue's Redaction of Euclid's Elements, the So-Called Adelard III Version**

**Example text**

This can be proved like in [KS,II], but we also can get this immediately by using a general t h e o r e m stated in [F1]. 3 If ~r : X --* B is semiuniversal in t E B for holomorphic deformations, then it there also is semiuniversal for real analytic deformations. , x l . th. , s ~ . th. ,~lu = X o & and d& is uniquely determined. By restricting a = &luna we have Zlcrnc = X o a . 0 and ~ to a the m a p do is uniquely determined. f. [Abi] or see below). We need some preparations: We put Y ' = Y \ { P 1 , .

Desired properties. So o u r d e f o r m a t i o n t~ : Z ---+ G h a s all W e n o w c a n p r o v e t h e following: 4 . 1). , s k ) -+ B' ) depend real analytically on B ' . , s ' ) depends real analytically on the fiber parameter ~ C B I . Theorem Proof. L e t t E B t b e a r b i t r a r y . 2 t h e r e e x i s t s a h o l o m o r p h i c s e m i u n i v e r s a l d e f o r m a t i o n 7r : X -+ B C (P~ w i t h X0 = X~ a n d n = dirn~ HI(Xo, ®~). 3 we k n o w t h a t lr : X -+ B is also s e m i u n i v e r s a l for r e a l a n a l y t i c deformations.

H o l o m o r p h i c S y m p l e c t i c S t r u c t u r e s . [9,12] We consider now K~ihler manifolds with holomorphic symplectic structure or hyperKiihler manifolds. While Atiyah's article in this volume treats hyper-K~ihler manifolds more from the real or quaternionic viewpoint, we shall emphasize the complex analytic viewpoint. 2, the reader is referred to Atiyah's article and references therein. A hyper-Kiihler manifold is a Kiihler manifold with a nongenerate holomorphic, parallel 2-form.