# Hyperbolic Manifolds and Discrete Groups by Michael Kapovich

By Michael Kapovich

Hyperbolic Manifolds and Discrete teams is on the crossroads of a number of branches of arithmetic: hyperbolic geometry, discrete teams, third-dimensional topology, geometric staff concept, and intricate research. the main target during the textual content is at the "Big Monster," i.e., on Thurston’s hyperbolization theorem, which has not just thoroughly alterations the panorama of 3-dimensinal topology and Kleinian workforce concept yet is among the important result of three-dimensional topology. The booklet in all fairness self-contained, replete with appealing illustrations, a wealthy set of examples of key recommendations, a variety of workouts, and an in depth bibliography and index. it may function a fantastic graduate course/seminar textual content or as a accomplished reference.

Similar abstract books

Intégration: Chapitres 7 et 8

Intégration, Chapitres 7 et 8Les Éléments de mathématique de Nicolas BOURBAKI ont pour objet une présentation rigoureuse, systématique et sans prérequis des mathématiques depuis leurs fondements. Ce quantity du Livre d’Intégration, sixième Livre du traité, traite de l’intégration sur les groupes localement compacts et de ses purposes.

Extra resources for Hyperbolic Manifolds and Discrete Groups

Sample text

9• •1 • 4 • 5 CircleGraph[G, Add[3]] 6 • 0 • ............................................................... ......... . .... ... ....... . .

Pn . Now consider the number m = (2 · 3 · 5 · 7 · 11 · 13 · · · pn ) + 1 This number is odd, so it cannot be divisible by 2. Likewise, m is one more than a multiple of 3, so it is not divisible by 3. In this way we see that m is not divisible by any of the prime numbers. 1. Thus, the original assumption that there is a largest prime number is false, so there are an infinite number of prime numbers. We define the greatest common divisor (GCD) of two numbers to be the largest integer that divides both of the numbers.

2: Multiplication table for Terry’s dance steps Stay FlipRt RotRt FlipLft RotLft Spin Stay FlipRt RotRt FlipLft RotLft Spin Stay FlipRt RotRt FlipLft RotLft Spin FlipRt Stay Spin RotLft FlipLft RotRt RotRt FlipLft RotLft Spin Stay FlipRt FlipLft RotRt FlipRt Stay Spin RotLft RotLft Spin Stay FlipRt RotRt FlipLft Spin RotLft FlipLft RotRt FlipRt Stay puts Terry in the same position as a RotLft.